

Metrology

MANUAL

ComGage Level 1 Software

Document No. : Edition : © Copyright : D2F722 010 July 2019

Contents

1.	Intr	oduction	3
2.	Ger	neral information on the ComGage Level 1 software	4
3.	Mai	in menu of the ComGage Level 1 software	5
4.	Set	tings of the ComGage Level 1 software	6
_	4.1	Language	6
	4.2	Data Directories	7
	4.3	Date / Time	7
	4.4	Connections	8
	4.5	Onscreen keyboard	. 10
	4.6	Mechanical Adjustment	. 10
	4.7	Automatic Start	. 11
	4.8	Password	. 11
5.	Cre	ating / changing test schemes in ComGage Level 1	. 12
	5.1	File selection for creating, changing, duplicating and deleting test schemes	. 12
	5.2	Selecting the test sequence type when creating a test scheme	. 13
	5.3	Main window for creating test schemes	. 14
	5.4	Programming of characteristics	. 15
	5.5	Programming of the test sequence	. 20
6.	Меа	asuring with ComGage Level 1	. 25
	6.1	File selection for starting the measurement	. 25
	6.2	Measuring window	. 26
	6.3	Result window	. 28
	6.4	Calibration window	. 29
	6.5	Master-Calibration window	. 30
	6.6	Run Chart	. 31
7.	Pro	cessing measurement data with ComGage Level 1	. 32
	7.1	File selection	. 32
	7.2	Analyse	. 33
	7.3	Save	. 34
	7.4	Print	. 34
	7.5	Delete	. 34
8.	Exc	hange of data with ComGage Professional	. 35
9.	Cre	ation of display window templates in ComGage Professional	. 36
10	.Imp	oortant conditions concerning the use of ComGage Level 1	. 37
Ar	nen	dix A	. 38
	Ter	ms and Formulas used by the ComGage Level 1 SPC calculations	. 38

1. Introduction

ComGage Level 1 is an easy-to-use metrology and process control software in production.

The software is used to check components with different characteristics. In addition, the software provides process control information via trend displays.

MEASUREMENT DATA > A	NALYSE > Graphical Trend D	ispla y		×
Order Number	ART_8889	Article Number	ART_8889	
Characteristic	[C1] Dia D20 / 1	T		
20.020			USL Nom LSL NS NN HNG P NN P NN P NN P Max Max Cm Cm Cm Cm Cpk Cpk	20.0300 20.0000 4 0 0 0.0000 20.0155 20.0250 20.0250 0.0200 0.0200 0.0200 0.57 0.57 0.59
Help	Filter		Table	Close

Features

- Simple and easy handling
- Applicable for :
 - simple hand gauge stations
 - multi gauging fixtures
- Measurement value collection by keyboard and from measuring and interface instruments
- Formula editor for linking the measuring inputs; static and dynamic measurement modes
- Simple control of measuring sequence
- Online trend displays
- Control of digital outputs and polling of digital inputs
- Printout of measurement values in tabular form
- Converter for MS-Excel, export functions for CSV file and USB/COM port
- Only available for Windows CE
- Supports several languages

2. General information on the ComGage Level 1 software

The ComGage Level 1 software is included in the scope of delivery of the CD43 and CD70 Displays/ Computers and <u>cannot</u> be purchased separately.

The ComGage Level 1 software was optimized for touch operation. So the touch keyboards for touch operation are displayed automatically when the input fields are clicked. The on-screen keyboard can be deactivated in the **Settings** menu.

TEST SCHEME >	CHANGE	> Progr	amme ch	aracterist	tic							×
Characterist	ic	C1		Nam	e	Dia	D20 / 1					
þ	Name									>	<	
Mea	Dia D2	0 / 1										
	&	м	()	7	8	9	/	*	-		-
	Ι	С	<	>	4	5	6	%	=	+		
	1/2	Ι	\$	0	1	2	3	,		-		
	ABC	4	→		Space					OK		
Help									Can	ncel	OK	

Onscreen keyboard for entering values, designations and names :

Onscreen keyboard for selecting parameters :

TEST SCHEME > CHANGE > Programme	e characteristic			>
Characteristic C1	Name	Dia D20 / 1		
Resolution			×	V
Mea 0.0001 0.01 0.01 0.01 0.01 0.01 0.01 0.00001 0.00001				4
		▼	OK	
Help			Cancel	лк

3. Main menu of the ComGage Level 1 software

After the ComGage Level 1 software has been started, the main menu of ComGage Level 1 appears :

ComGage Level 1 V5.20 6/14/2018 10:04 AM				
Measuring - ∅ ∥ ⊥ ≡ ∅ ○ ∅ ∠ ⊚ ∅ …	Measurement Data			
Test Scheme	Settings			

Caption

In the caption, the following information is shown :

- Program name
- Program version
- Current date and current time

Settings button

Via the Settings menu, the following settings can be made :

- Selection of the connected measuring and interface hardware
- Configuration / mechanical adjustment of the connected measuring and interface hardware
- Selection of the data directories for saving test schemes, measurement data, ...
- Selection of the ComGage Level 1 language (English, German, ...)
- Setting a password to protect the settings and test schemes
- Adjustment of the automatic start of a test scheme when ComGage Level 1 is started
- Configuration of the system time

Test Scheme button

Via the Test Scheme menu, the test schemes can be managed :

- Creating new test schemes
- Changing existing test schemes
- Duplicating test schemes
- Deleting test schemes

Measuring button

In the *Measuring* menu, measurement data is calculated, visualised and collected.

Measurement Data button

Via the *Measurement Data*, the collected measurement data can be managed :

- Visualising the collected measurement data as graphical SPC displays or as value tables
- Saving the collected measurement data as Excel file
- Printing the collected measurement data
- Deleting the collected measurement data

Button 🗵

Closing the ComGage Level 1 software and returning to the Windows CE interface

4. Settings of the ComGage Level 1 software

Via the *Settings* menu, the settings of the ComGage Level 1 software can be configured. Below, the individual menu items of the menu are described.

Settings		×
System Language	Data Directories	Date / Time
Hardware Connections	Mechanical Adjustment	☑ Onscreen keyboard
Workplace Automatic Start	Password	
Help		Close

Via the *Close* button, you can leave the *Settings* menu and the ComGage Level 1 software returns to the main menu.

4.1 Language

The language can be chosen in the *Settings / Language* menu. In the language selection window, a list of available languages is shown :

SETTINGS > Language
Select a language čeština dansk - Danish Deutsch - German English - English español - Spanish français - French italiano - Italian norsk (bokmål) - Norwegian (Bokmål) Polski português - Portuguese svenska - Swedish Türkçe Pycckviž
Cancel OK

Choose your language and confirm it with **OK**.

4.2 Data Directories

In the **Settings / Data Directories** menu, the data directories from which ComGage Level 1 loads the data or saves data can be configured :

- Directory for test schemes (and measurement data) :
 - *.tss Test scheme in the ComGage Level 1 V5 format
 - *.tsf Test scheme in the ComGage Professional V4 format
 - *.rto Test order in the ComGage Professional V4 format to save the measurement data
 - *.tod Test order in the ComGage Professional V4 format to save the measurement data
- Directory for converted measurement data (Excel files, CSV files, ...)
- Directory for pictures (*.bmp files)
- Directory for reference information and user setup

S	ETTINGS > Data Directories	×
		-1
	Directory for Test Schemes	
	\FlashDisk\ComGage_L1\	
	Directory for converted Measuring data	
	\FlashDisk\ComGage_L1\	
	Directory for Pictures	
	\FlashDisk\ComGage_L1\	
	Directory for Reference Information and User Setup	
	\FlashDisk\ComGage_L1\	
[Help Cancel OK	

The button opens a separate dialog window to select a directory.

<u>Note:</u> You can only type in existing data directories, as ComGage does not create data directories. When the data directories are selected, ComGage Level 1 checks whether the data directories exist and whether write permissions are available. If the data directory does not exist or if there are no write permissions for the data directory, an corresponding error message of the integrity check will be displayed.

4.3 Date / Time

By clicking on the Settings / Date & Time menu, the system time of the system can be adjusted.

<u>Note :</u> To do this, a configuration window of the Windows CE operating system is called up by ComGage Level 1. This option is not available on Standard Windows

4.4 Connections

Via the **Settings / Connections** menu, the connected IMBus interfaces can be detected automatically and the measuring instruments can be configured, if necessary (via **Setup** buttons). ComGage Level 1 opens this window and starts the hardware analysis automatically, when the program is started for the first time.

By the button **Analysis** the automatic detection of connected IBR hardware is started. The dialog shows the result of the last hardware scan with the range of measuring inputs (M1...Mx), Digital Inputs (I1...Ix), Digital Outputs (Q1...Qx) and Hand / Foot switches (T1...Tx) of each IBR device. By using the **Setup** button, the measuring inputs of a detected interface can be configured.

IBRit-rf1 :

In the case of IBRit-rf1 radio modules, the menu for the configuration of the modules (e.g. address assignment) can be opened by pressing the **Service** button. → See IBRit-rf1 Manual

IMBus :

The IMBus Setup button displays all connected IMBus modules :

C	ONNECTIONS > USB / IMBus	×
	Service Measuring inputs of IBR device	_1
	IMB-im4 (4 Inductive Probe Inputs) Connection 1 M4 - Addr.1	
	IMB-im4 (4 Inductive Probe Inputs) Connection 2 M5 - Addr.2	
	- IMB-im4 (4 Inductive Probe Inputs) Connection 3	
	IMB-im4 (4 Inductive Probe Inputs) Connection 4	
	IMB-sm2 (2 RS232 Connections) Connection 1 M8 - Addr.5	
	_ IMB-sm2 (2 RS232 Connections) Connection 2 M9 - Addr.6	
	Digital Input 1 (IMB-io4) I1 - INP 1 Setup	
	Digital Input 2 (IMB-io4) I2 - INP 2 Setup ▼	
	Help AA A Cancel OK	

With the four arrow buttons, it is possible to scroll the list of IMBus modules.

Using the **Setup** buttons of the individual measuring inputs, the resolution and measuring direction and more can be chosen in the case of IMBus measuring modules (IMB-im1...8, IMB-dm1...4, IMB-tc1...4, IMB-ai1...8, IMB-ae1, ...). → See IMBus Manual

SETTINGS > CONNECTIONS > Setup	×
IMB-im1 00137715	HW=V1.0 SW=V2.0 Update
Measuring direction	Standard
Measuring step	0.0001
Digital filter	Level 3
/ Mech. Adjust	OK

By the **Setup** buttons of the IMB-rf1 modules, the IBRit-rf1 radio module addresses can be assigned to the 8 IMB-rf1 addresses and the IBRit-rf1 radio modules can be configured : → See IMB-rf1 Manual and IBRit-rf1 Manuals

S	ettings > com	INECTIONS > Se	rvice	×		
		PROGR/	AMMING OF THE RF-MODULES	1		
	Set factory	settings	Addr. 70			
	Set Module	Address Mada -> Valua	Addr. 72 Addr. 73			
	Permanent Mode -> Value number Addr. 74 Permanent Mode -> Interval time Addr. 75					
	(*) Factory	settings	· · · · <u> </u>	OK		
	- MEASUREMI	ENT VALUES FI	ROM THE RF-MODULES	′ 7		
	Number	IMB-Address	Measurement Value]		
	2	5	0.01	ОК		

4.5 Onscreen keyboard

Allows the activation / deactivation of the integrated onscreen keyboard.

4.6 Mechanical Adjustment

By clicking on the **Settings / Mechanical Adjustment** menu, the window for the mechanical adjustment of inductive probes in the fixture is opened.

(This is necessary, since inductive probes only work optimally near their electrical zero point.)

Mechanical adjustment process :

- 1. Selection of the probe which is to be adjusted. If there are more probes connected than the visible, you can then scroll through the list of connected probes using the scrollbar.
- 2. Insert the masterpiece or a component into the fixture.
- 3. Carry out the mechanical adjustment of the probes until all bars are in the green area. The green area of the bars can be adjusted from +/- 0.01 mm to +/- 5 mm using the selection field at the bottom of the window. The default value is +/- 0.05 mm.

Warning :

It is absolutely necessary to adjust the green area to +/-0.05 mm in order to mechanically adjust the inductive probes properly.

4. By clicking the **OK** button, you can exit the window.

4.7 Automatic Start

In the *Settings / Automatic Start* menu, a test scheme / order can be chosen, which is to be started automatically when ComGage Level 1 is started.

SETTINGS > Automatic Start	×
Test Order	
 ART_8888 APT 8890	
ART-9712 ART-9713	
Help Cancel	OK

4.8 Password

In the *Settings / Password* menu, a password can be assigned. This password protects the *Settings* und *Test Scheme* menus.

To enter the password, the window shown below appears :

SETTINGS > Enter new password	×
	Cancel OK

<u>Note :</u> When starting the software for the first time, no password is activated.

Enter the password and confirm it with OK.

To delete the password, the *Settings / Password* must be selected. Then the password entry must be deleted and confirmed with **OK**.

Note : The master password "sEndsw" always allows you to close the software in the main menu.

5. Creating / changing test schemes in ComGage Level 1

In a test scheme, a component, its characteristics and the test sequence are defined :

- In the header of the test scheme, the article number as well as the article name are entered.
- Up to 8 characteristics can be created :
 - Characteristic name
 - Nominal size and tolerances
 - Probe mixing (with mathematical functions, such as sin, cos, tan, Min, Max, ...)
 - Measurement mode (for static, dynamic [Min, Max, TIR, Mean], ... measurements)
 - Master values for zero adjustment or automatic gauge calibration (for air gauging)
 - Sample size
 - Plausibility limits
 - **•** ...
- For the characteristics, a test sequence must be defined :
 - Definition which characteristics are measured / calibrated together and in which order
 - Assignment of the foot switches, function keys, digital inputs to the functions to be performed (e.g. saving measurement values, deleting measurement values, adjustment, ...)
 - Tolerance output to digital outputs, output of the measurement values via COM port, ...

When a test scheme is created, 4 files are written in the "*Directory for Test Schemes*" with the article number as file names :

- *.tss Test scheme in the ComGage Level 1 V5 format
- *.tsf Test scheme in the ComGage Professional V4 format
- *.rto Test order in the ComGage Professional V4 format to save the measurement data
- *.tod Test order in the ComGage Professional V4 format to save the measurement data

The measurement data is saved automatically in a ComGage Professional test order for compatibility reasons and can thus be processed further directly in ComGage Professional.

5.1 File selection for creating, changing, duplicating and deleting test schemes

After the Test Scheme menu has been called up, the file selection window appears :

TEST SCHEME > Select Test §	Scheme			×
Article Number	Article Name	Size	Date	· · · · · · · · · · · · · · · · · · ·
ART-9712 ART-9713	Kurbelwelle Crank shaft	231792 231074	8/29/2017 12/13/2017	
ART_8888 ART_8889	Kurbelwelle Shaft	92492 92492	9/19/2017 9/19/2017	Create
				Change
				Duplicate
				Delete
Help			Cancel	

First, a test scheme must be selected. This chosen test scheme can be changed, duplicated or deleted. As an alternative, a new test scheme can be created.

5.2 Selecting the test sequence type when creating a test scheme

When a test scheme is created or duplicated, the Article Number has to be entered and the *test sequence type* has to be selected :

т	est scheme > create	> Input Article Number	×
	Article Number Test sequence type	ART-9713 Type 1 : Sequential measurement with column displays Type 2 : Sequential measurement with column displays and advanced calibration functions Type 3 : Auto recognition with bar graphs	
	Help	Cancel OK	

<u>Note :</u> When a test scheme is duplicated, only the characteristics are transferred to the duplicate. This allows you to choose a different test

sequence type for the duplicate.

ComGage Level 1 provides the following test sequence types :

Type 1 : Sequential measurement with column displays

- Measurement of the characteristics in determinable order (sequence)
- Grouping of several characteristics for the measurement
- Calibration of the characteristics in the measuring window

Type 2 : Sequential measurement with column displays and advanced calibration functions

- Measurement of the characteristics in determinable order (sequence)
- Grouping of several characteristics for the measurement
- · Calibration of the characteristics in a separate programmable sequence
- Advanced calibration functions like calibration tolerances, reference checks, forced calibration by part counter / time / ...

Type 3 : Auto recognition with bar graphs

- Automatic gage selection by auto recognition when a measuring value changes
- Calibration of the characteristics in the measuring window
- No advanced calibration functions

Note regarding the following chapters

Depending on the selected test sequence type, certain options are not available in the programming windows.

In the corresponding chapters this is indicated by an accompanying table. Options marked with 🗸 are available for this test sequence type, options marked with * are not available.

If no option of a programming window is available for a test sequence type, the entire programming window is not selectable.

Example (Measuring sequence):

The options *Create*, *Change*, *Delete* are available for the programming of test schemes with test sequence type 1 and type 2. When programming test schemes with test sequence type 3, this window is not displayed.

5.3 Main window for creating test schemes

The test scheme is programmed in 2 steps :

- 1. Creating the characteristics
- 2. Programming the test sequence incl. the measuring and calibration order of the characteristics :

т	est scheme > change >	> Sele	ect characteristic					>
	Article Number	AR	Г-9715					
	Article Name	Crar	k shaft					
	Characteristics	No.	Name	Nominal	USL	LSL	Unit	
		C1	Dia D20 / 1	20	0.02	-0.02	mm	Create
		C2	Dia D20 / 2	20	0.02	-0.02	mm	
		C3	Dia D20 / 3	20	0.02	-0.02	mm	Change
	▲ · · · ·	C4	Length L50	50	0.02	-0.02	mm	
		LS.	Lengin Lou	60	0.02	-0.02	mm	Delete
	\bullet							
		4					Þ	
	Test sequence	Seq	uential measurement with colur	nn display	s (Typ	be 1)		Progr.
[Help					G	ancel	ОК

Article name input field

Here, the name of the article (e.g. crank shaft, motor block, \dots) can be entered.

Characteristics section

Here, the 1...8 characteristics can be created.

New characteristics can be created and existing characteristics can be changed or deleted. In the example 5 characteristics were created :

- 3x Diameter D20
- 1x Length L50
- 1x Length L60

The programming of the characteristics is described in Chapter 5.3.

Test Sequence section

Here, the test sequence can be programmed.

The programming of the test sequence is described in Chapter 5.4.

5.4 Programming of characteristics

The characteristic is programmed on 4 windows. In each of the 4 windows, the name of the characteristics can be entered in the top line of the 4 windows.

Window 1 = "Drawing data" :

TEST SCHEME > CHANGE > Programme characteristic				
Characteristic C1	Name Dia D20 / 1			
Drawing Data	Unit	mm		
Mea. Value Collection	Resolution	0.0001 💌		
	Nominal size	20		
Calibration	Upper Specification Limit	0.02		
Statistics	🗌 Upper Controlling Limit			
	🗖 Lower Controlling Limit			
	Lower Specification Limit	-0.02		
Help		Cancel OK		

Test	Test sequence type			
Type 1	Type 2	Type 3		
\checkmark	 ✓ 	✓		
\checkmark	 ✓ 	✓		
✓	~	~		
\checkmark	✓	\checkmark		
\checkmark	\checkmark	\checkmark		
\checkmark	\checkmark	\checkmark		
\checkmark	✓	\checkmark		

Unit

Here, the unit can be selected.

In the list, the standard units are shown.

Special units (**Setup** \rightarrow) can be defined by the **Setup** button. For a "special" unit, a *conversion* offset and a *conversion factor* can be entered (e.g. for the conversion of °F in °C, the factor 5/9 and the offset -160/9 must be entered).

Resolution

Here, the resolution of the characteristic can be defined which is used for all display elements of measurement values.

Nominal size

Nominal size of the characteristic

Upper Specification Limit

Upper specification limit of the characteristic (is entered relative to the nominal size)

Upper Controlling Limit

Upper controlling limit of the characteristic (is entered relative to the nominal size)

Lower Controlling Limit

Lower controlling limit of the characteristic (is entered relative to the nominal size)

Lower Specification Limit

Lower specification limit of the characteristic (is entered relative to the nominal size)

Window 2 = "Mea. value collection" :

TEST SCHEME > CHANGE > Programme c	haracteristic X
Characteristic C1	Name Dia D20 / 1
Drawing Data Mea. Value Collection	
Statistics	O Measuring value transfer by data button O Input by keyboard
	FORMULA FOR MEA. VALUE CALCULATION M1 Hardware
Help	Cancel

Test	Test sequence type				
Type 1	Type 2	Туре 3			
✓	\checkmark	\checkmark			
✓	\checkmark	×			
✓	\checkmark	\checkmark			
✓	✓	×			
✓	\checkmark	\checkmark			

Measurement Mode

a) Static Measurement

The component is measured statically. For example, it is inserted in a fixture during the measurement. ComGage continuously measures and calculates the result of the characteristic. The display of measurement values continuously outputs the current measurement value.

b) Dynamic Measurement

The component is moved, e.g. rotated, during the measurement. During this movement of the component, the minimum, maximum, TIR and mean values are searched.

Min	\rightarrow	Determination of the smallest measurement value
Max	\rightarrow	Determination of the largest measurement value
TIR	\rightarrow	Determination of the TIR value (Max-Min)
Mean 1	\rightarrow	Determination of the area mean value ((Max+Min)/2)
Mean 2	\rightarrow	Determination of the arithmetic mean value ((X1++Xn)/n)

c) Measuring value transfer by data button

Only those measurement values are shown, which are transmitted by data button on the gauge. This mode is especially for hand gauges, on which the measurement value is to be sent by the data button on the hand gauge or, for example, for balances which automatically send their measurement value at the end of measurement.

d) Input by keyboard

ComGage Level 1 opens a touch keyboard via which the measurement value can be entered per touch, mouse or keyboard.

Formula for Measurement Value

In the *Formula for Measurement Value*, the measuring inputs, the results of other characteristics, foot switch inputs, digital inputs, register values, other numeric values and the time can be combined in any way.

Address	Input
Mx	Measuring input x
Cx	Current measuring value of characteristic x
Cx_File	Last measuring value from file of characteristic x
Cx_USL	If measuring value of characteristic x is > USL, then $Cx_USL = 1$
Cx_UCL	If measuring value of characteristic x is > UCL and < USL, then Cx_UCL = 1
Cx_ok	If measuring value of characteristic x is inside the controlling limits, then $Cx_ok = 1$
Cx_LCL	If measuring value of characteristic x is > LSL and < LCL, then Cx_LCL = 1
Cx_LSL	If measuring value of characteristic x is < LSL, then Cx_LSL = 1
Cx_NOM_Val	Nominal value of characteristic x, as programmed in the drawing data
Cx_USL_Val	Upper specification limit of characteristic x, as programmed in the drawing data
Cx_UCL_Val	Upper controlling limit of characteristic x, as programmed in the drawing data
Cx_LCL_Val	Lower controlling limit of characteristic x, as programmed in the drawing data
Cx_LSL_Val	Lower specification limit of characteristic x, as programmed in the drawing data
Cx_MA1_Val	1. Master value of characteristic x, as programmed in the drawing data
Cx_MA2_Val	2. Master value of characteristic x, as programmed in the drawing data
lx	Digital input x (State "set" = 1 / State "not set" = 0)
Tx	Hand / Foot switch x (State "pressed" = 1 / State "not pressed" = 0)
Fx	Function key F1 F12

In the formulas the following *inputs* can be used :

In the formulas the following operators can be used :

Operator	Function	Example
+	Addition of inputs, characteristics and numbers	M1+M10-34
-	Subtraction of inputs, characteristics and numbers	M1-M2+1.1e-4
*	Multiplication of inputs, characteristics and numbers	M3*0.5+M2*M1
/	Division of inputs, characteristics and numbers	M2/3
٨	'x power by y' (e.g. 2^3 = 2*2*2 = 8)	$M2^{(1/2)} = Square root of M2$
%	Modulo-operator = carryover of a division (e.g. $5\%3 = 2$)	M2%2
ABS()	Absolute value	ABS(M1)
SIGN()	Delivers the sign of the parameter	SIGN(-5.23)=-1
ROUND()	Rounds to the next integer	ROUND(5.43)=5 / ROUND(5.53)=6
INT()	Rounds down to the next integer	INT(5.43)=5 / INT(5.53)=5
CEIL()	Rounds up to the next integer	CEIL(5.43)=6 / CEIL(5.53)=6
SIN()	Sine (unit: degree)	SIN(M2)
COS()	Cosine (unit: degree)	COS(M2)
TAN()	Tangent (unit: degree)	TAN(M2*3+M1)
ASIN()	Arc – Sine (unit: degree)	ASIN(M2/50.4)
ACOS()	Arc – Cosine (unit: degree)	ACOS(M2/50.4)
ATAN()	Arc – Tangent (unit: degree)	ATAN(M2/50.4)
PI	Pi (= 3.141592654)	SIN(M2*180/PI)
EXP()	Exponential function (2.7182818 ^x)	EXP(M1)
LOG()	Natural logarithm	LOG(M1)
TIME(0)	Returns the number of milliseconds since midnight	TIME(0)
MONTH	Current month (1=January, 2=February,)	MONTH
DAY	Current day of month (1 31)	DAY
DAYOFWEEK	Current day of week (0=Sunday, 1=Monday,, 6=Saturday)	DAYOFWEEK
HOUR	Current time: Hour (0 23)	HOUR
MINUTE	Current time: Minute (0 59)	MINUTE
SECOND	Current time: Second (0 59)	SECOND
Min(;;;)	Min-value of all elements in the list	Min(M1;M2;C3;M4+C5)
Min()	Min-value of all saved measuring values of the characteristic	Min(C3)
Max(;;;) or Max()	Max-value (see Min-function)	Max(M1;M2;C3;M4+C5) or Max(C3)
Avr(;;;) or Avr()	Average (see Min-function)	Avr(M1;M2;C3;M4+C5) or Avr(C3)
Tir(;;;) or Tir()	Max-value minus Min-value (see Min-function)	Tir(M1;M2;C3;M4+C5) or Tir(C3)
SD(;;;) or SD()	Standard deviation (see Min-function)	SD(M1;M2;C3;M4+C5) or SD(C3)

Window 3 = "Calibration" :

TEST SCHEME > CHANGE > Programme characteristic X				
Characteristic C1	Name Dia D20 / 1			
Drawing Data		21.012		
Mea. Value Collection	 ☑ 1. Master Value ☑ 2. Master value 	21.012		
Calibration				
Statistics	REFERENCE CHECK	ter cal.		
	Tol. ±	0.002		
	Compare calibration to last cal.			
	Tol. ±	0.001		
Help		Cancel		

Test sequence type				
Type 1	Type 2	Туре 3		
~	✓	~		
~	✓	~		
×	\checkmark	×		
×	\checkmark	×		

Master Values

Input of the master values for this characteristic.

To perform a zero adjustment, entering the 1. Master value is necessary. To carry out a gauge calibration (e.g. on air gauging), entering two master values is required.

Note :

When using two masters, the difference between the two master values must be at least > 0.00001.

Reference Check

Here, calibration tolerances can be activated, either related to the last calibration or to the mastercalibration. It is possible to activate both options at the same time. An upper and a lower tolerance value are defined in the unit of the characteristic. If the "*Calibrate*" command is processed in the test sequence, the tolerance limits defined here are used to check the calibration (= reference check). If the tolerance values are hurt then an error message is displayed. This function is used to monitor the measuring fixture (typical errors and faults: probe tip loose / master part dirty / probe defective / ...).

Note :

The "Master-Calibration of Characteristics" function must be called in measuring mode for those characteristics in the ComGage test scheme, for which the reference check is activated. The master-calibration must then be carried out prior to the very first regular calibration (see note in section "Configuration of Calibration" on page 22).

<u>Window 4 = "Statistics" :</u>

TEST SCHEME > CHANGE > Programme characteristic		
Characteristic C1	Name Dia D20 / 1	
Drawing Data Mea. Value Collection	Upper plausibility limit Lower plausibility limit Sample size	
Statistics	2 Norm for Cp- / Cpk-Value Sigma = Sges [ISO9000]	▼ ▼
Help		Cancel OK

Test sequence type					
Type 1	Type 2	Туре 3			
✓	\checkmark	✓			
✓	~	✓			
✓	✓	✓			
✓	\checkmark	\checkmark			

Plausibility limits

If the measurement value is outside the plausibility limits during the data saving process, the operator is then asked whether the measurement value is to be saved or rejected. If the measurement value is rejected, the measurement can be repeated.

The plausibility limits must be entered as absolute values.

They do not refer to the nominal size of the characteristic.

Sample size

For the calculation of a Cp / Cpk value.

⇒ See Appendix A

Note :

In the case of a 100% check, it is not possible to display Cp / Cpk value.

Norm for standard deviation

Selection of the norm for calculating the standard deviation (ISO9000 / QS9000) and for calculating the Cp / Cpk value.

 \Rightarrow See Appendix A

5.5 Programming of the test sequence

Test sequence is programmed on 6 windows.

Note : Non-used windows / options of the test sequence are not displayed.

Window 1 = "Measuring Sequence" (Test sequence type 1 and 2):

TEST SCHEME > CHANGE > Programme Te	st Sequence	>
Article Number ART-9715		1
Measuring Sequence	Mea. Step : Message Text / Characteristics	
Mea. Data Processing	MS1 : Measure Diameters 1-3	Create
Calibration Sequence	MS2 : Measure Length L50 C4	Change Delete
Calibration Settings	MS3 : Measure Length L60 C5	Delete
Control Elements		
Dig. Out (Result)		
	Y	
Help	Cancel	OK

Test sequence type					
Type 1	Type 2	Туре 3			
~	✓	×			
~	✓	×			
✓	✓	×			

In the example, the 3 characteristics C1, C2, C3 = 3x "*Diameter D20*" are first measured together in a measuring step. Afterwards, the characteristic C4 = "Length L50" is measured and in the end the characteristic C5 = "Length L60".

In Chapter 6.2, the windows of the 3 measuring steps during the measurement are shown and described.

Using the buttons *Create / Change / Delete*, the measuring steps can be managed. The characteristics for each measuring step must be selected. Blue labelled characteristics are already used in other test steps but can be assigned to the current one.

For each measuring step, a message text for the measuring window can be saved.

The message text can be used to provide the operator an instruction how to carry out the measurement. When existing, you can select a different template for this measuring step display window by the combo box located at the dialog bottom. The button _____ will open a preview window showing the measurement value displays of the selected template.

Information concerning the creation of display window templates can be found in chapter 9.

Programming of Measuring Step	MS1			×
Message Text		Measure diameters 1-3		
Characteristics			All on	All off
Help	(Standard)	• <u></u>	Cancel	ОК

Note :

Characteristics marked blue are already measured in other measuring steps. If they are selected, they will be assigned to the actual measuring step instead of the original one.

Characteristics which cannot be measured in the same measuring step as the already selected ones are displayed in grey colour. Static and dynamic characteristics can be measured together in one measuring step. Separate measuring steps are needed for the measurement of characteristics with measuring mode 'Measuring value transfer by data button' or 'Input by keyboard'.

[EST SCHEME > CHANGE > Pro	ogramme Test Sequen	ce			×			
	Article Number	ART-9714				1			
	Auto Recog	gnition	Charac	teristic : Message text / Hysteresis			Test s	sequence	type
	Mea. Data Pro	ocessing	C1 :	Measure diameter D20 Hysteresis: 0.012	^		Type 1	Type 2	Туре 3
	Control Ele	ments	C2 :	Measure diameter D20 / 2 Hysteresis: 0.012		Change	×	×	\checkmark
	Dig. Out (F	Result)	C3 :	Measure diameter D20 / 3 Hysteresis: 0.012					
					~				
	Help			Ca	ancel	ОК			

Window 1 = "Auto Recognition" (Test sequence type 3):

In the example , the 3 characteristics C1 = "Diameter D20", C2 = "Length L50" und C3 = "Length L60" should be measured by auto recognition (Test Sequence type 3). When using auto recognition, for each characteristic a separate measuring step will be created automatically.

By the button *Change* the selected measuring step can be configured. A message text for the measuring window can be entered and the hysteresis (required measurement value change of current characteristic, to change into this measuring step automatically) can be configured.

When existing, you can select a different template for this measuring step display window by the combo box located at the dialog bottom. The button will open a preview window showing the measurement value displays of the selected template.

Information concerning the creation of display window templates can be found in chapter 9.

Program auto recognition for chara	cteristic C2			×
Message Text	Measure	diameter D20 / 2		
Needed value change fo	r calling the test step			
Help (Standard)	▼	Cancel	ОК

<u>Window 2 = "Measurement Data Processing" :</u>

TEST SCHEME > CHANGE > Programme Test Sequence		
Article Number ART-9715		
Measuring Sequence	Display of Result Window after Measurement Measuring Value Output over LISB / COM2	
Mea. Data Processing Calibration Sequence	CSV export	
Calibration Settings Control Elements		
Dig. Out (Result)	mode or on keyboard input (msec)	
Help	Cancel	

Test sequence type				
Type 1	Type 2	Туре 3		
\checkmark	\checkmark	×		
\checkmark	\checkmark	\checkmark		
✓	✓	\checkmark		
\checkmark	\checkmark	\checkmark		

Display of Result Window after Measurement

In the result window, the measurement results of all characteristics are shown after all measuring steps have been performed and the operator can confirm or reject all measurement results of the current component.

In Chapter 6.3, the result window during the measurement is shown and described.

Measuring Value Output over USB / RS232

If a component has been tested completely (= all measuring steps have been carried out) and the measurement results have been confirmed inside the result window being activated, the measurement data of the component is then outputted via the COM2 port of Mecc or IMB-pc1 or via USB port of CD43 / CD70.

The measurement data is outputted in the MUX10 format with 9600 Baud, N, 8, 1.

Characteristic C1 :	01A+1234.5678 <cr></cr>
Characteristic C2 :	02A+1234.5678 <cr></cr>
 Characteristic C20 :	20A+1234.5678 <cr></cr>

CSV-Export

If a component has been tested completely (= all measuring steps have been carried out) and the measurement results have been confirmed inside the result window being activated, the measurement data of the component is then attached to a CSV file as a new line.

The file name of the CSV file is the name of the test order and is saved in the "Directory for converted measurement data".

Auto. confirmation on gauge triggered mode or on keyboard input (msec)

If this option is active, the values of gauge triggered characteristics and characteristics entered by keyboard, are confirmed automatically after the specified time and ComGage changes to the next test step.

Window 3 = "Configuration of Calibration" :

TEST SCHEME > CHANGE > Programme Te	st Sequence X
TEST SCHEME > CHANGE > Programme Term Article Number ART-9715 Measuring Sequence Mea. Data Processing Calibration Sequence Calibration Settings Control Elements	cal. steps programmable (own windows) Cal. Step : Message Text / Characteristics CS1 : Calibrate all Diameters C1, C2, C3 Change Delete
Dig. Out (Result)	Cancel

Test sequence type					
Type 1	1 Type 2 Type 3				
×	✓	×			
×	\checkmark	×			
×	\checkmark	×			

However, the calibration is performed in a separate calibration sequence with several calibration steps with separate calibration windows (see Chapter 6.4). Because of a separate calibration sequence, a calibration order other than the measuring order can be defined. For each calibration step, a separate message text (= instruction for the operator) can be saved.

Window 4 = "Calibration Settings" :

TEST SCHEME > CHANGE > Programme Test	st Sequence	×			
Article Number ART-9715			Test	sequence	type
			Type 1	Type 2	Туре 3
Measuring Sequence	Calibration by part counter	50	×	✓	*
Mea. Data Processing	☑ Calibration by time (min)	120	×	\checkmark	×
Calibration Sequence					
Calibration Settings					
Control Elements	🗔 Dessents for Master Calibration				
Dig. Out (Result)	Passeule for Master-Calibration	1234	×	\checkmark	×
Help		Cancel OK			

If calibration by part counter or by time is activated (either one or both), the calibration sequence is called up after the measurement of e.g. 50 parts, or automatically every 120 minutes, for example, then the operator is forced to perform a calibration.

For protection of the Master-Calibration a passcode can be entered.

Window 5 = "Control Elements" :

TEST SCHEME > CHANGE > Programme T	est Sequence				×
Article Number ART-9715					_1
Measuring Sequence		Function key	Foot switch	Digital Input	
Mea. Data Processing	Save		T1 .		
Calibration Sequence	Back				
Calibration Settings	Calibration		 		
Control Elements	Master Cal.	F10 •	[· · ·	
Dig. Out (Result)	Run Chart	F5 💌		• •	
Help			Cance	ОК	

Test sequence type					
Type 1	Type 2 Type 3				
~	✓	✓			
✓	~	✓			
✓	~	✓			
×	✓	×			
~	~	×			

In the measuring windows, there are *Save*, *Back*, ... buttons. These buttons can be controlled via the touch screen and are described in Chapter 6.2.

To execute these functions, function keys, hand / foot switches and digital inputs can also be assigned in this window.

Note :

The assigned function keys, had / foot switches and digital inputs are also assigned for controlling the run chart window (see chapter 6.6).

Next >	same assignment as for Save
< Back	same assignment as for Back
Measure	same assignment as for Run Chart

The button for ending the measurement mode (Exit) is generally assigned to the function keys <Alt>+<F10>.

Window 6 = "Digital Outputs (Result)" :

TEST SCHEME > CHANGE > Programme Test Sequence				
Article Number ART-9715				
Measuring Sequence	Current Test Step = OK	Q3 •		
Mea. Data Processing	Current Test Step = NOK	Q4 💌		
Calibration Sequence	All Characteristics = OK	01		
Calibration Settings	All Characteristics = NOK			
Control Elements				
Dig. Out (Result)	Calibration = OK	🔻		
	Calibration = NOK	🔽		
Help		Cancel OK		

Test sequence type					
Type 1	Type 2 Type 3				
\checkmark	\checkmark	~			
~	✓	✓			
~	~	✓			
~	<	~			
~	~	~			
\checkmark	\checkmark	✓			

In the example, the digital outputs are set = 1 if the following conditions are met :

Digital output Q1 = 1 if the characteristics of the last part are within the tolerance limits Digital output Q2 = 1 if at least one of the characteristics of the last part is out of the tolerance limits Digital output Q3 = 1 if the characteristics in the current measuring step are within the tolerance limits Digital output Q4 = 1 if at least one of the characteristics of the current measuring step is out of the tolerance limit

6. Measuring with ComGage Level 1

In the measurement mode, ComGage Level 1 only works with the test order generated automatically in menu *Test Scheme / Create or Change* or by ComGage Professional, i.e. with the following 2 files :

*.rto Test order in the ComGage Professional V4 format to save the measurement data *.tod Test order in the ComGage Professional V4 format to save the measurement data

The measurement data is saved automatically in a ComGage Professional test order for compatibility reasons and can thus be processed further directly in ComGage Professional.

6.1 File selection for starting the measurement

After the *Measuring* menu has been called up, the file selection window appears :

ASURING > Select Te	est Order				
Order Number ART-9712 ART-9713 ART_8888 ART_8889	Article Number ART-9712 ART-9713 ART_8888 ART_8889	Article Name Kurbelwelle Crank shaft Kurbelwelle Shaft	Size 19962 19980 19962 19962	Date 8/30/2017 8/29/2017 9/19/2017 12/14/2017	Start
Help		T		Cancel	

First, a test order must be selected and then the Start button pressed.

6.2 Measuring window

There are three different types of measuring windows :

- Type 1 is used for the combined collection of 1...8 static or dynamic characteristics
- Type 2 is used for the collection of one characteristic which is sent by data button of the gauge
- Type 3 is used for the collection of one characteristic via keyboard input

In the case of type 2 and type 3, only one characteristic at a time can be sent. This means that a new measuring step is created by ComGage Level 1 for each characteristic.

In the header of the measuring window, the message text (= instruction for the operator), test order number, article name and article number are displayed. (See also Chapter 5.4 / Window 1)

MEASURING > DATA COLLECTION > Please measure part in fixture Test order : ART_8889 / Article : ART_8889 (Shaft)

In the footer, the following buttons are available :

Save >	Saves the measurement values of the current measuring step and switches to the next measuring step. In the case of dynamic characteristics, pressing the button once will start the dynamic measurement and pressing it again will stop the dynamic measurement. The software saves the measurement value and switches to the next measuring step.
< Back	Repeats the previous measuring step und rejects the measurement values of the previous measuring step.
Calibrate	The software switches to the calibration sequence. \rightarrow See Chapter 6.4
Run Chart	Display of run chart and value table of the collected measurement values. → See Chapter 6.6
Exit	Closes the measurement mode.

Measuring window for combined collection of 1...8 static or dynamic characteristics :

Measuring window for collection of one characteristic which is sent by data button of the gauge :

Measuring window for collection of one characteristic via keyboard input :

MEASURING > DATA COLLECTION > Input b	oy keyboard	
Test order: ART_8889 / Article: ART_8889 (Shaft)		
60.025 60.025 60.0100	•	
Length L60		
60.02		
7 8 9 <=		
4 5 6	15 :	20 25 UCL
1 2 3	je No.	
- 0 , OK	< Back	Save >

6.3 Result window

In the result window, the measurement results of all characteristics are shown after all measuring steps have been carried out and the operator can confirm or reject all measurement results of the current component.

In the footer, the following buttons are available :

Confirm	The collected measurement results of the part are saved in the database = test order and, if activated, written in the CSV file and, if activated, sent via the COM2 port / USB port.
Reject	The collected measurement results of the part are rejected and the measurement of the next part starts.
< Back	Repeats the previous measuring step and rejects the measurement values of the previous measuring step.
Run Chart	Display of run chart and value table of the collected measurement values. → See Chapter 6.6
Exit	Closes the measurement mode.

MEASURING > Confirm measuring data of part					
Test order: AR T_8889 / Ar	ticle: ART_8889	(Shaft)			
1 Dia D20 / 1	mm 20.0000	0.0300 / 0.0000	20.0250		
2 Dia D20 / 2	mm 20.0000	0.0300 / 0.0000	20.0290		
3 Dia D20 / 3	mm 20.0000	0.0300 / 0.0000	20.0170		
4 Length L50	mm 50.0000	0.0300 / -0.0300	50.0200		
5 Length L60	mm 60.0000	0.0300 / -0.0300	60.0200		
Exit Run Chart		< Back	Reject	Confirm	

6.4 Calibration window

If a separate calibration sequence is programmed, there are special calibration windows for the individual calibration steps with the message text (= instruction for the operator) saved in the test scheme. (Only static and dynamic characteristics are calibrated.)

In the footer, the following buttons are available :

Calibrate	Performs the calibration of the characteristics in the current calibration step and switches to the next calibration step.
Master-Calibrate	Calls up the separate sequence for master-calibration. → See Chapter 6.5

Exit Closes the measurement mode.

In the case of an error, an error message is displayed if reference check (See Chapter 5.3 / Window 3) has been activated, and the software also remains in the current calibration step to repeat the calibration.

MEASURING > CALIBRATE >	
Test order: ART_8889 / Article: ART_8889 (Shaft)	
Dia D20 / 1 [mm] Dia D20 / 2 [mm] Dia D20 / 2 [mm] Dia D20 / 3 [mm] 0.0015	1
0.0005 Attention 0.0005 The characteristics are out of calibration tolerance. Please check your fixture ! 0.0005 Image: Check your fixture !	
- 0,0003 - 0,0003 - 0,0003]
Exit Master-Calibrate	Calibrate

6.5 Master-Calibration window

From the calibration sequence, a separate master-calibrate sequence can be called up to perform the master-calibration after the fixture has been taken into operation / maintained.

In the footer, the following buttons are available :

Master-Calibrate Performs the master-calibration of the characteristics in the current master-calibration step and switches to the next master-calibration step.

Exit Closes the measurement mode.

To protect the master-calibration, a password (passcode) can be activated in the test scheme :

MEASURI	NG > MASTER-CALIBRATION > Passcode
Test order:	ART_8889 / Article : ART_8889 (Shaft)
	Passcode
	7 8 9 <= OK
	4 5 6 Cancel
	0

6.6 Run Chart

For each characteristic, the collected measurement values in the test order can be displayed by means of a run chart and a value table.

In the footer, the following buttons are available :

Next >	Switches to the next characteristic.
< Back	Switches to the previous characteristic.
Measure	Returns to the measuring windows.
Exit	Closes the measurement mode.

Displayed run chart :

Processing measurement data with ComGage Level 1

The collected measurement data can be analysed, printed, saved as Excel file and deleted with ComGage Level 1.

In this menu, ComGage Level 1 only works with the test order generated automatically in menu *Test Scheme / Create or Change* or by ComGage Professional, i.e. with the following 2 files :

*.rto Test order in the ComGage Professional V4 format to save the measurement data *.tod Test order in the ComGage Professional V4 format to save the measurement data

7.1 File selection

After the *Measurement Data* menu has been called up, the window for the file selection is shown :

ME	ASUREMENT DATA >	Select Test Order				×
	Order Number ART-9712 ART-9713 ART_8888 ART_8889	Article Number ART-9712 ART-9713 ART_8888 ART_8889	Article Name Kurbelwelle Crank shaft Kurbelwelle Shaft	Size 19962 19990 19962 19962	Date 8/30/2017 8/29/2017 9/19/2017 12/14/2017	Analyse Save Print Delete
Ĺ	Help				Cancel	

First, a test order must be selected.

Then, one of the 4 buttons must be pressed. \rightarrow See Chapter 7.2 ... 7.4

7.2 Analyse

After the *Analye* button has been pressed, the measurement data is represented graphically as a run chart, as a histogram and as statistical data.

In the header, the characteristic to be visualised can be chosen.

Via the *Table* button, the measurement values are displayed as value table. (Here, too, the characteristic can be chosen in the header.)

ME	ASUREMENT DATA >	Select Test Order				×
Г						
	Order Number	Article Number	Article Name	Size	Date	
	ART-9712	ART-9712	Kurbelwelle	19962	8/30/2017	
	ART-9713	ART-9713	Crank shaft	19990	8/29/2017	
	ART_8888	ART_8888	Kurbelwelle	19962	9/19/2017	Analyse
	ART_8889	ART_8889	Shaft	19962	9/19/2017	
						Save
						Print
						Delete
	1					
			T		Cancel	

By clicking on the *Edit* button, the selected measurement value can be changed. (Password = *sval*) By clicking on the *Delete* button, the selected measurement value can be deleted. (Password = *sval*)

7.3 Save

After the **Save** button has been pressed, the measurement data in the "*Directory for converted measurement data*" is saved as an Excel file or ComGage Test Order.

м	EASUREMENT DATA	> SAVE > Settings		×
	File Format	Excel-Format	•	
	Output File	\FlashDisk\comgage_data\comgage_I2\ART_8889.xls	•	
		Cancel	OK	i li

Note :

In the "Output File" field, the output directory and file name can still be modified.

7.4 Print

After the *Print* button has been pressed, the measurement data is sent to a printer in tabular format. To do this, the printer can be selected, among other things.

N	otos	
	0103	
_		

a) Under Windows CE, USB printers are shown under the port name "LPT1".
b) We recommend checking that Paper Size = A4 has been chosen.

Print ? 0K × PCL Laser Print Range Orientation Printer: • 🖲 Aļ Portrait Port: Network • O Selection O Lan<u>d</u>scape <u>N</u>et Path: Margins (inches) L<u>e</u>ft: 1" • Paper Size: A4 1 L<u>e</u>ft: <u>T</u>op: Draft Mode Right: 1 Bottom: 1

7.5 Delete

After clicking the **Delete** button, in the following window can be selected if only the measurement data shall be deleted or the complete test order :

MEASUREMENT DATA :	> Delete	×
Order Number	ART-9713	
	Only datate Massy remont Data	
	Chilly delete Measurement, Data	-
	Delete all Measurement Data and Test Order	
<u> </u>		
	Cancel	

8. Exchange of data with ComGage Professional

Using ComGage Professional (IBR_TSH module), test schemes (*.tsf) with free screen design can be created for ComGage Level 1, requiring the following setting to be made in the window for test scheme creation inside ComGage Professional :

TEST SCHEME	(Create / Change)			
Article Number	Test1234		ОК	
Hardware Connections Special settings	Setup Setup	Documentation Ix / Qx / Rx Reference Information	Setup Setup	Test scheme for ComGage Level 1

With ComGage Professional (IBR_TOH module), test orders (*.rto) can be created on the basis of these test schemes (*.tsf), which can then be used for the collection of measurement values in ComGage Level 1.

Since no test schemes (*.tsf) are needed in the measurement mode in ComGage Level 1, a separate test order (*.rto) can also be created for each batch, for example, on the basis of the same test scheme in ComGage Professional and used for measurement in ComGage Level 1.

<u>Note :</u> To be able to end the measurement in ComGage Level 1, a text field has to be added when programming a test scheme with ComGage Professional for ComGage Level 1. This text field has to be activated as button and has to simulate the function key "Exit measurement mode". This option is available from ComGage V4.35.

Programming of the Text-Eleme	nt X		
Display Text End Measurement			
Frame button-out	Display Type Centred		
Background Colour	Fitting in the text		
Font Type	Activate Text-Element as Button. Pressing simulates function key		
Font Colour	Exit measurement mode		
Register for Showing / Hiding the Te	ext-Element		
End Measurement			
OK	Cancel Help		

The test orders (*.rto / *.tod), in turn, can be processed further in ComGage Professional. Thus, a QDAS export of the collected measurement data can be carried out, for example, via the IBR_TOH module.

9. Creation of display window templates in ComGage Professional

Using ComGage Professional (IBR_TSH module), display window templates for measuring steps (*.dwc file) can be created. The display window template can be selected for a specific measuring step when programming the test sequence.

To create a display window template for a measuring step display window, proceed as follows :

- 1. Create a test scheme with 8 characteristics. The characteristic attributes and the formula for measurement value inputs to compute the characteristic value are not relevant.
- 2. Create a new test step. The test step does not need to contain any test step functions.
- 3. Change to programming of the display window of the recently created test step.
- 4. By the menu *Resolution*, you can change the resolution of the display window to the resolution of the target device for which you intend to create the display window template.
- 5. For designing a display window, a raster of 50 lines x 40 columns is used. Since the buttons for controlling the measuring sequence and the measuring step caption will be added automatically by ComGage Level 1 / Level 2, the first 6 and last 4 rows of the designed display window must be left empty.
- 6. Now you can add measurement value displays. For each measurement value display one of the characteristic C1 .. C8 must be assigned. In the measuring step the selected characteristics will be assigned to the measurement value displays the following way: The measurement value displays assigned to C1 will be assigned to the 1st selected characteristic of the display window template, the measurement value displays assigned to C2 will be assigned to the 2nd selected characteristic of the measuring step and so on.
- 7. If a measuring step contains less characteristics as the display window template is designed for, not assignable measurement value displays will be removed from the display window of the measuring step.
- 8. If a measuring step uses more characteristics than available in the display window template, not all characteristics of the measuring step will get a measurement value display assigned.
- 9. The selected background colour of the display window template will be used also in the display window of the measuring step.
- 10. The created display window template can be saved into a *.dwc file by pressing the <S> key. Already existing display window templates can be loaded by the <L> key for editing.

The display window templates (*.dwc files) need to be copied into the directory for test schemes. Afterwards, they can be selected in the measuring step configuration window.

Appendix A

Terms and Formulas used by the ComGage Level 1 SPC calculations

Average

The average value indicates the value around which the measuring results fluctuate. (corresponds with the maximum turning point of the bell-shaped curve)

Standard deviation

The standard deviation indicates with which absolute value the measuring results fluctuate around the average value. (corresponds with the width of the bell-shaped curve)

In the area of +/- one standard deviation around the average value are located on a normally distributed production process from statistical view: 68.26 % of all manufactured components. In the area of +/- two standard deviations around the average value are located on a normally distributed production process from statistical view: 95.4 % of all manufactured components. In the area of +/- three standard deviations around the average value are located on a normally distributed production process from statistical view: 95.4 % of all manufactured components.

Calculation of the estimated standard deviation σ :

<u>Note :</u> The standard deviation is estimated for Cp & Cpk values, because on measuring only samples of components there are not all measurement values of the manufactured components available for statistical calculations.

Method "Sigma = Sges" :

$$\sigma = s_{ges} = \sqrt{\frac{\sum_{i=1}^{n^{*k}} (x_i - x_q)^{\Lambda} 2}{n^{*k} - 1}}$$

$$x_i : Measuring value i$$

$$x_q : Average of all measuring values$$

$$n : Sample size$$

$$k : Number of samples$$

Method "Sigma = Rq / Dn" :

 $r_j = \max j - \min j$; range of sample j

$$\sigma = \frac{\sum_{i=1}^{k} r_{i}}{k * d_{n}}$$

$$d_{n} : \text{ Table of constants, see DGQ - SPC2, page: 128}$$

Method "Sigma = Sq / An" :

$$s_{j} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i, j} - x_{q, j})^{2}}{n-1}}; Standard \ deviation \ of \ sample \ j$$

 a_n : Table of constants, see DGQ – SPC2, page: 128

Method "Sigma = sqr(...)" :

$$s_{j} = \sqrt{\frac{\sum_{i=1}^{n} (x_{i, j} - x_{q, j})^{2}}{n-1}}; Standard \, deviation \, of \, sample \, j$$

$$\sigma = \sqrt{\frac{\sum_{j=1}^{k} s_{j}^{2}}{k}} = \sqrt{\frac{\sum_{j=1}^{k} \sum_{i=1}^{n} (x_{i, j} - x_{q, j})^{2}}{k^{*}(n-1)}} = \sqrt{\frac{\sum_{j=1}^{k} sum2, j - \frac{sum1, j^{*} sum1, j}{n}}{k^{*}(n-1)}}$$

$$sum1, j = \sum_{i=1}^{n} x_{i, j}, \qquad x_{i, j} : Measuring \, value \, i \, of \, sample \, j$$

$$sum2, j = \sum_{i=1}^{n} x_{i, j^{*}} x_{i, j}, \qquad x_{i, j} : Measuring \, value \, i \, of \, sample \, j$$

$$sum2, j = \sum_{i=1}^{n} x_{i, j^{*}} x_{i, j}, \qquad x_{i, j} : Measuring \, value \, i \, of \, sample \, j$$

Cp - Value

The Cp - Value is calculated as shown below :

$$C_p = \frac{USL - LSL}{6*\sigma}$$

If the Cp - Value = 1, then from statistical view 99.73 % of the manufactured components are within the tolerance limits.

If the Cp - Value < 1, then from statistical view less than 99.73 % of the manufactured components are within the tolerance limits.

If the Cp - Value > 1, then from statistical view at least 99.73 % of the manufactured components are within the tolerance limits.

Cpk - Value

_ _

The Cpk - Value is calculated as shown below :

$$C_{pk} = MIN(\frac{USL - Xq}{3*\sigma}; \frac{Xq - LSL}{3*\sigma})$$

The Cpk value is > 1.33 for a capable process. With a Cpk value between 1.00 and 1.33, the process must be constantly monitored.

If Cpk << Cp and Cp > 1.00, then the process centring must be improved.